5–71. The rod assembly is used to support the 250-lb cylinder. Determine the components of reaction at the ball-and-socket joint \(A \), the smooth journal bearing \(E \), and the force developed along rod \(CD \). The connections at \(C \) and \(D \) are ball-and-socket joints.

Equations of Equilibrium: Since rod \(CD \) is a two-force member, it exerts a force \(F_{DC} \) directed along its axis as defined by \(a_{DC} \) on rod \(BC \), Fig. a. Expressing each of the forces indicated on the free-body diagram in Cartesian vector form,

\[
\begin{align*}
F_A &= A_x i + A_y j + A_z k \\
F_E &= E_x i + E_y j + E_z k \\
W &= (-250k) \text{ lb} \\
F_{DC} &= -F_{DC} k
\end{align*}
\]

Applying the force equation of equilibrium

\[
\sum \mathbf{F} = 0; \quad F_A + F_E + F_{DC} + W = 0
\]

\[
(A_x i + A_y j + A_z k) + (E_x i + E_y j + E_z k) + (-F_{DC} k) + (-250k) = 0
\]

\[
(A_x + E_x) i + (A_y + E_y) j + A_z - F_{DC} k = 0
\]

Equating \(i \), \(j \), and \(k \) components,

\[
\begin{align*}
A_x + E_x &= 0 \quad & (1) \\
A_y &= 0 \quad & (2) \\
A_z - F_{DC} - 250 &= 0 \quad & (3)
\end{align*}
\]

In order to apply the moment equation of equilibrium about point \(A \), the position vectors \(r_{AC}, r_{AE}, \) and \(r_{AF} \), Fig. a, must be determined first.

\[
r_{AC} = [-1i + 1j] \text{ ft}
\]

\[
r_{AE} = [2i] \text{ ft}
\]

\[
r_{AF} = [1.5i + 3j] \text{ ft}
\]

Thus,

\[
\sum \mathbf{M}_A = 0; \quad (r_{AC} \times F_{DC}) + (r_{AE} \times F_E) + (r_{AF} \times W) = 0
\]

\[
(-1i + 1j) \times (-F_{DC} k) + (2i) \times (E_x i + E_y j + E_z k) + (1.5i + 3j) \times (-250k) = 0
\]

\[
(-F_{DC} + 2E_y - 750k) j + (375 - F_{DC}) i + (-2E_z) k = 0
\]
Equating i, j, and k components,

\[-F_{PC} + 2E_z = 750 = 0 \quad (4)\]
\[375 - F_{PC} = 0 \quad (5)\]
\[-2E_z = 0 \quad (6)\]

Solving Eq. (1) through (6), yields

\[F_{PC} = 375 \text{ lb} \quad \text{Ans.}\]
\[E_x = 0 \quad \text{Ans.}\]
\[E_z = 362.5 \text{ lb} \quad \text{Ans.}\]
\[A_x = 0 \quad \text{Ans.}\]
\[A_y = 0 \quad \text{Ans.}\]
\[A_z = 62.5 \text{ lb} \quad \text{Ans.}\]
5–72. Determine the components of reaction acting at the smooth journal bearings A, B, and C.

Equations of Equilibrium: From the free-body diagram of the shaft, Fig. 5. C_y and C_z can be obtained by writing the force equation of equilibrium along the y axis and the moment equation of equilibrium about the y axis.

\[
\Sigma F_y = 0; \quad 450 \cos 45^\circ + C_y = 0
\]
\[
C_y = -318.20 \text{ N} = -318 \text{ N} \quad \text{ Ans.}
\]
\[
\Sigma M_y = 0; \quad C_z(0.6) - 300 = 0
\]
\[
C_z = 500 \text{ N} \quad \text{ Ans.}
\]

Using the above results and writing the moment equations of equilibrium about the x and z axes,

\[
\Sigma M_x = 0; \quad B_z(0.8) - 450 \cos 45^\circ(0.4) = 0
\]
\[
B_z = -272.70 \text{ N} = -273 \text{ N} \quad \text{ Ans.}
\]
\[
\Sigma M_z = 0; \quad -B_z(0.8) - (-318.20)(0.6) = 0
\]
\[
B_z = 238.65 \text{ N} = 239 \text{ N} \quad \text{ Ans.}
\]

Finally, using the above results and writing the force equations of equilibrium along the x and y axes,

\[
\Sigma F_x = 0; \quad A_x + 238.5 = 0
\]
\[
A_x = -238.65 \text{ N} = -239 \text{ N} \quad \text{ Ans.}
\]
\[
\Sigma F_y = 0; \quad A_y - (-272.70) + 500 - 450 \sin 45^\circ = 0
\]
\[
A_y = 90.90 \text{ N} = 90.9 \text{ N} \quad \text{ Ans.}
\]

The negative signs indicate that C_y, B_z, and A_x act in the opposite sense of that shown on the free-body diagram.
5-74. If the load has a weight of 200 lb, determine the \(x, y, z \) components of reaction at the ball-and-socket joint \(A \) and the tension in each of the wires.

Equations of Equilibrium: Expressing the forces indicated on the free-body diagram, Fig. a, in Cartesian vector form,

\[
\begin{align*}
\mathbf{F}_A &= A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k} \\
W &= [-200] \text{ lb} \\
\mathbf{F}_{BD} &= F_{BD} \mathbf{k} \\
\mathbf{F}_{CD} &= F_{CD} \mathbf{k} \\
\mathbf{F}_{EF} &= F_{EF} \mathbf{k}
\end{align*}
\]

Applying the force equation of equilibrium,

\[
\Sigma F = 0 \quad \Rightarrow \quad \mathbf{F}_A + \mathbf{F}_{BD} + \mathbf{F}_{CD} + \mathbf{F}_{EF} + \mathbf{W} = 0
\]

\[
\begin{align*}
(A_x i + A_y j + A_z k) + F_{BD} k + \left(- \frac{4}{5} F_{CD} j + \frac{3}{5} F_{CD} k\right) + F_{EF} k + (-200) k &= 0 \\
A_x i + A_y j + A_z k &= 0
\end{align*}
\]

Equating \(i, j, \) and \(k \) components,

\[
\begin{align*}
A_x &= 0 \\
A_y - \frac{4}{5} F_{CD} &= 0 \\
A_z + F_{BD} + \frac{3}{5} F_{CD} + F_{EF} - 200 &= 0
\end{align*}
\]

In order to write the moment equation of equilibrium about point \(A \), the position vectors \(\mathbf{r}_{AB}, \mathbf{r}_{AG}, \mathbf{r}_{AC}, \) and \(\mathbf{r}_{AG} \) must be determined first.

\[
\begin{align*}
\mathbf{r}_{AB} &= [41] \text{ ft} \\
\mathbf{r}_{AG} &= [41+2] \text{ ft} \\
\mathbf{r}_{AC} &= [41+4] \text{ ft} \\
\mathbf{r}_{AG} &= [21+4] \text{ ft}
\end{align*}
\]

Thus,

\[
\begin{align*}
\Sigma M_A &= \theta \left((\mathbf{r}_{AB} \times \mathbf{F}_{BD}) + (\mathbf{r}_{AC} \times \mathbf{F}_{CD}) + (\mathbf{r}_{AE} \times \mathbf{F}_{EF}) + (\mathbf{r}_{AG} \times \mathbf{W})\right) = 0 \\
&= (41) \times (F_{BD} k) + (41+4) \times \left(- \frac{4}{5} F_{CD} j + \frac{3}{5} F_{CD} k\right) + (21+4) \times (F_{EF} k) + (41+4) \times (-200 k) \\
&= \left(\frac{12}{5} F_{CD} + 4 F_{EF} - 400\right) j + \left(-8 F_{BD} - \frac{12}{5} F_{CD} - 2 F_{EF} + 800\right) k = 0
\end{align*}
\]
Equating \(i, j, \) and \(k \) components,

\[
\frac{12}{5} F_{CD} + 4F_{EF} - 400 = 0
\] \hspace{1cm} (4)

\[
-4F_{BD} - \frac{12}{15} F_{CD} - 2F_{EF} + 800 = 0
\] \hspace{1cm} (5)

\[
-\frac{16}{5} F_{CD} = 0
\] \hspace{1cm} (6)

Solving Eqs. (1) through (6),

\[F_{CD} = 0 \]
\[F_{EF} = 100 \text{ lb} \]
\[F_{BD} = 150 \text{ lb} \]
\[A_x = 0 \]
\[A_y = 0 \]
\[A_z = 100 \text{ lb} \]

The negative signs indicate that \(A_x \) acts in the opposite sense to that on the free-body diagram.
5–78. The plate has a weight of \(W \) with center of gravity at \(G \). Determine the tension developed in wires \(AB \), \(CD \), and \(EF \) if the force \(P = 0.75W \) is applied at \(d = L/2 \).

Equations of Equilibrium: From the free-body diagram, Fig. 44918, \(T_{AB} \) can be obtained by writing the moment equation of equilibrium about the \(x' \) axis.

\[
\sum M_{x'} = 0; \quad 0.75W \left(\frac{L}{2} + \frac{L}{2} \cos 45^\circ \right) + W \left(\frac{L}{2} \right) - T_{AB} (L) = 0
\]

\[
T_{AB} = 1.1402W = 1.14W \quad \text{Ans.}
\]

Using the above result and writing the moment equations of equilibrium about the \(y \) and \(y' \) axes,

\[
\sum M_y = 0; \quad W \left(\frac{L}{2} \right) + 0.75W \left(\frac{L}{2} + \frac{L}{2} \sin 45^\circ \right) - 1.1402W \left(\frac{L}{2} \right) - T_{EF} (L) = 0
\]

\[
T_{EF} = 0.570W \quad \text{Ans.}
\]

\[
\sum M_{y'} = 0; \quad T_{CD} (L) + 1.1402W \left(\frac{L}{2} \right) - W \left(\frac{L}{2} \right) - 0.75W \left(\frac{L}{2} - \frac{L}{2} \sin 45^\circ \right) = 0
\]

\[
T_{CD} = 0.0396W \quad \text{Ans.}
\]
7–18. Determine the internal normal force, shear force, and moment at points D and E in the overhang beam. Point D is located just to the left of the roller support at B, where the couple moment acts.

The intensity of the triangular distributed load at E can be found using the similar triangles in Fig. b.

With reference to Fig. a,

\[+ \Sigma M_A = 0; \quad B_y(3) - 2(3)(1.5) - 6 - \frac{1}{2}(2)(3)(4) - \left(\frac{2}{3} \right)(6) = 0 \]

\[B_y = 15 \text{kN} \]

Using this result and referring to Fig. c,

\[\sum F_x = 0; \quad 5 \left(\frac{4}{3} \right) - N_D = 0 \quad N_D = 4 \text{kN} \quad \text{Ans.} \]

\[+ \Sigma F_y = 0; \quad V_D + 15 - \frac{1}{2}(2)(3) - \left(\frac{3}{5} \right)(6) = 0 \quad V_D = -9 \text{kN} \quad \text{Ans.} \]

\[\Sigma M_D = 0; \quad -M_D - \frac{1}{2}(2)(3)(1) - \left(\frac{3}{5} \right)(3) = 0 \quad M_D = -18 \text{kN} \cdot \text{m} \quad \text{Ans.} \]

Also, by referring to Fig. d, we can write

\[\sum F_x = 0; \quad 5 \left(\frac{4}{3} \right) - N_E = 0 \quad N_E = 4 \text{kN} \quad \text{Ans.} \]

\[+ \Sigma F_y = 0; \quad V_E - \frac{1}{2}(1)(1.5) - \left(\frac{3}{5} \right)(1.5) = 0 \quad V_E = 3.75 \text{kN} \quad \text{Ans.} \]

\[\Sigma M_E = 0; \quad -M_E - \frac{1}{2}(1)(1.5)(0.5) - \left(\frac{3}{5} \right)(1.5) = 0 \quad M_E = -4.875 \text{kN} \cdot \text{m} \quad \text{Ans.} \]

The negative sign indicates that \(V_D, M_D, \) and \(M_E \) act in the opposite sense to that shown on the free-body diagram.
7–37. The shaft is supported by a thrust bearing at A and a journal bearing at B. Determine the x, y, z components of internal loading at point C.

With reference to Fig. a,

\[\Sigma M_x = 0; \quad B_x (3 - 900(1)) - 750(1) = 0 \quad B_x = 550 \text{ N} \]
\[\Sigma M_z = 0; \quad 750(2) + 600(2) - B_z (3) = 0 \quad B_z = 900 \text{ N} \]

Using these results and referring to Fig. b,

\[\Sigma F_x = 0; \quad (V_C)_x + 900 - 750 - 600 = 0 \quad (V_C)_x = 450 \text{ N} \quad \text{Ans.} \]
\[\Sigma F_y = 0; \quad N_C = 0 \quad \text{Ans.} \]
\[\Sigma F_z = 0; \quad (V_C)_z + 550 = 0 \quad (V_C)_z = -550 \text{ N} \quad \text{Ans.} \]

\[\Sigma M_x = 0; \quad (M_C)_x + 550(1.5) = 0 \quad (M_C)_x = -825 \text{ N} \cdot \text{m} \quad \text{Ans.} \]
\[\Sigma M_y = 0; \quad T_C + 600(0.2) - 750(0.2) = 0 \quad T_C = 30 \text{ N} \cdot \text{m} \quad \text{Ans.} \]
\[\Sigma M_z = 0; \quad (M_C)_z + 750(0.5) + 600(0.5) - 900(1.5) = 0 \quad (M_C)_z = 675 \text{ N} \cdot \text{m} \quad \text{Ans.} \]

The negative signs indicate that \((V_C)_z\) and \((M_C)_z\) act in the opposite sense to those shown in the free-body diagram.
•7–57. Draw the shear and moment diagrams for the overhang beam.

Since the loading is discontinuous at support B, the shear and moment equations must be written for regions $0 \leq x < 3$ m and 3 m $< x \leq 6$ m of the beam. The free-body diagram of the beam’s segment sectioned through an arbitrary point within these two regions is shown in Figs. b and c.

Region $0 \leq x < 3$ m, Fig. b

\[+ \Sigma F_y = 0; \quad -4 - \frac{1}{2} \left(\frac{4}{3} x \right) - V = 0 \]
\[V = \left\{ -\frac{2}{3} x^2 - 4 \right\} \text{kN} \quad (1) \]

\[+ \Sigma M = 0; \quad M + \frac{1}{2} \left(\frac{4}{3} x \right) \left(\frac{2}{3} x \right) + 4x = 0 \quad M = \left\{ -\frac{2}{9} x^3 - 4x \right\} \text{kN} \cdot \text{m} \quad (2) \]

Region 3 m $< x \leq 6$ m, Fig. c

\[+ \Sigma F_y = 0; \quad V - 4(6-x) = 0 \]
\[V = \{24 - 4x\} \text{kN} \quad (3) \]

\[+ \Sigma M = 0; \quad -M - 4(6-x) \left[\frac{1}{2} (6-x) \right] = 0 \quad M = \{-2(6-x)^2\} \text{kN} \cdot \text{m} \quad (4) \]

The shear diagram shown in Fig. d is plotted using Eqs. (1) and (3). The value of shear just to the left and just to the right of the support is evaluated using Eqs. (1) and (3), respectively.

\[V_{l x=3 \text{ m}} = -\frac{2}{3} (3^2) - 4 = -10 \text{ kN} \]
\[V_{r x=3 \text{ m}} = 24 - 4(3) = 12 \text{ kN} \]

The moment diagram shown in Fig. e is plotted using Eqs. (2) and (4). The value of the moment at support B is evaluated using either Eq. (2) or Eq. (4).

\[M_{l x=3 \text{ m}} = -\frac{2}{9} (3^2) - 4(3) = -18 \text{ kN} \cdot \text{m} \]

or

\[M_{l x=3 \text{ m}} = -2(6-3)^2 = -18 \text{ kN} \cdot \text{m} \]
7–59. Determine the largest intensity w_0 of the distributed load that the beam can support if the beam can withstand a maximum bending moment of $M_{\text{max}} = 20 \text{kN} \cdot \text{m}$ and a maximum shear force of $V_{\text{max}} = 80 \text{kN}$.

Since the loading is discontinuous at support B, the shear and moment equations must be written for regions $0 \leq x < 4.5 \text{ m}$ and $4.5 \text{ m} < x \leq 6 \text{ m}$ of the beam. The free-body diagram of the beam’s segment sectioned through the arbitrary points within these two regions are shown in Figs. b and c.

Region $0 \leq x < 4.5 \text{ m}$, Fig. b

\[+ \sum F_y = 0; \quad 2.167w_0 - w_0x - V = 0 \quad V = w_0(2.167 - x) \quad (1) \]

\[+ \sum M = 0; \quad M + w_0x\left(\frac{x}{2}\right) - 2.167w_0x = 0 \quad M = w_0(2.167x - 0.5x^2) \quad (2) \]

Region $4.5 \text{ m} < x \leq 6 \text{ m}$, Fig. c

\[+ \sum F_y = 0; \quad V - \frac{1}{3}\left(\frac{6-x}{1.5}\right)w_0(6-x) = 0 \quad V = \frac{w_0}{3}(6-x)^2 \quad (3) \]

\[+ \sum M = 0; \quad -M - \frac{1}{3}\left(\frac{6-x}{1.5}\right)w_0(6-x)\left[\frac{1}{3}(6-x)\right] = 0 \quad M = -\frac{w_0}{9}(6-x)^3 \quad (4) \]

The shear diagram shown in Fig. d is plotted using Eqs. (1) and (3). The value of the shear just to the left and right of support B is evaluated using either Eq. (1) or Eq. (3), respectively.

\[V_{x=4.5 \text{ m}^-} = w_0(2.167 - 4.5) = -2.333w_0 \]

\[V_{x=4.5 \text{ m}^+} = \frac{w_0}{3}(6 - 4.5)^2 = 0.75w_0 \]

The location at which the shear is equal to zero is obtained by setting $V = 0$ in Eq. (1).

\[0 = w_0(2.167 - x) \quad x = 2.167 \text{ m} \]

The moment diagram shown in Fig. e is plotted using Eqs. (2) and (4). The value of the moment at $x = 2.167 \text{ m}$ ($V = 0$) is evaluated using Eq. (2).

\[M_{x=2.167 \text{ m}} = w_0\left[2.167(2.167) - 0.5(2.167)^2\right] = 2.347w_0 \]

The value of the moment at support B is evaluated using Eqs. (2) or (4).

\[M_{x=4.5 \text{ m}} = -\frac{w_0}{9}(6 - 4.5)^3 = -0.375w_0 \]

By observing the shear and moment diagrams, we notice that $V_{\text{max}} = 2.333w_0$ and $M_{\text{max}} = 2.347w_0$. Thus,

$V_{\text{max}} = 80 = 2.333w_0$

$w_0 = 34.29 \text{kN} / \text{m}$

$M_{\text{max}} = 20 = 2.347w_0$

$w_0 = 8.52 \text{kN} / \text{m}$ (control!)

Ans.
\[A_x = 0 \]
\[A_y = 2.167w_0 \]
\[B_y = 3.083w_0 \]

(a)

\[0 \leq x < 4.5 \text{ m} \] (b)

\[\frac{1}{2}[(\frac{6-x}{1.5})w_0](6-x) \]
\[\frac{1}{3}(6-x) \]

(c) \[4.5 \text{ m} \leq x \leq 6 \text{ m} \]

(d)

\[2.347w_0 \]

(e)